

EECE 310 - Lecture 13

Outline

Applications

Graphical Analysis using Load Line

Outline

Applications

Graphical Analysis using Load Line

Figure 5.27 (a) Simple MOSFET amplifier with input v_{CS} and output v_{DS} . (b) The voltage transfer characteristic (VTC) of the amplifier in (a). The three segments of the VTC correspond to the three regions of operation of the MOSFET.

Application as an inverter (NOT gate)

Digital application

In the MOSFET circuit:

Small voltage at V_I (< V_t) \rightarrow $V_O = V_{DD}$ (*large voltage*)

Large Voltage at V_I (close to V_{DD}) $\rightarrow V_O$ is very small

We can also build a NOR gate as follows:

Figure 5.29 The MOSFET amplifier with a small time-varying signal $v_{gs}(t)$ superimposed on the dc bias voltage V_{GS} . The MOSFET operates on a short almost-linear segment of the VTC around the bias point Q and provides an output voltage $v_{ds} = A_v v_{gs}$.

Applications

Application as an Amplifier ANALOG:

 $|Gain| = \frac{V_{opp}}{V_{ipp}}$ Small signal gain = $\frac{dv_o}{dv_i}$ at Q tion: $V_O = V_{DD} - \frac{1}{2}Rk(V_I - V_t)^2$

In saturation:

$$\frac{dv_o}{dv_i} = -Rk(V_I - V_t)$$

At Q:
$$gain = -Rk(V_{IQ} - V_t) = -RkV_{oVQ}$$

What are the limits to avoid distortion: A and B keep it in SAT Limits in input:

$$V_{IQ} + V_{i(signal)max} \le V_{1B}$$
$$V_{IQ} - V_{i(signal)max} \ge V_{1A}$$

Figure 5.30 Signal waveforms at gate and drain for the amplifier in Example 5.9. Note that to ensure operation in the saturation region at all times, $v_{DSmin} \ge v_{CSmax} - V_t$.

Outline

Applications

Graphical Analysis using Load Line

Figure 5.31 Graphical construction to determine the voltage transfer characteristic of the amplifier in Fig. 5.29(a).

Figure 5.33 Two load lines and corresponding bias points. Bias point Q_1 does not leave sufficient room for positive signal swing at the drain (too close to V_{DD}). Bias point Q_2 is too close to the boundary of the triode region and might not allow for sufficient negative signal swing.

Thank you !